Select Page

The ELITEpro XC Portable Energy Meter is a very popular and well designed 3 phase power data logger, used by electricians and engineers worldwide. Some features that are often overlooked on this device are the analog input channels.

Analog input channels are especially helpful when used in conjunction with power measurements to correlate the consumption of electricity with environmental, HVAC plant performance, or other process conditions. Typical uses might include logging ambient temperature, building temperatures, solar insolation, tank pressures, duct flows, etc.

The ELITEpro XC 3-Phase Power Data Logger has four analog input channels that can be configured for voltage or current input in any combination among channels. 

COMPATIBLE SENSOR TYPES

The following sensor types are supported and selected through the ELOG software interface:

  • 0/4-20 mA externally powered current loop
  • 0-30 VDC single-ended, non-isolated

Note: The ELITEpro XC can measure input voltages up to 30.0 volts. The polarity protection circuitry, however, can only withstand 15 volts of reverse-applied polarity without permanent damage to the meter. The maximum allowable current flowing into the analog input terminal is 23 mA.

Analog Input Channels Sensor Data Plates

Photo courtesy of DENT

CAUTION: Ensure that the sensor current/voltage is within range and the channel is correctly configured using ELOG 15 before connecting external sensors. Sustained exposure to elevated signals may damage the ELITEpro XC and this will void your warranty.

CAUTION: Observe the correct signal polarity when connecting voltage sensors to the ELITEpro XC above 10 volts. Damaging currents may flow from the connected sensor in the event of reverse polarity or misconfiguration and this will void your warranty. 

The Analog Input Channel types (voltage or current) should be configured using the ELOG software prior to connecting external sensors. This sequence will prevent the unexpected/unpredictable combinations of voltage transducers connected to low impedance loads (499 ohms) or current transducers with an open circuit.

The first set of Sensor and Output fields on the screen represent the Physical Range. This is where the user enters the low and high process values from the sensor. This data can typically be found on the data plate or datasheet of the sensor (typical sensor image, right). The second set of Sensor and Output fields represent the Electrical Output. This is where the user enters the minimum and maximum electrical output values of the sensor, also listed on the data plate or datasheet.

Analog Input Channels

Photo courtesy of DENT

CURRENT LOOP CONNECTION

Sensors using current loops are widely used in industry to communicate analog signals in the presence of electromagnetic interference. Both 2- and 3-wire current loops (often referred to as loop-powered or separately excited, respectively) are commonly used in the industry. Both types of current sensors are illustrated in this section. Internally, the ELITEpro XC uses 0.1% precision 499-ohm resistors to measure the voltage drop impressed by the external current source. Current loop sensors will typically be powered from a 24-volt DC supply. The ELITEpro XC has four measurement channels. The negative terminals of each channel are common to each other and connected to the reference plane for power measurements. For this reason, it is imperative that the ELITEpro XC be connected as the last component in the current loop rather than the first if multiple channels are used. Best practices are to use a single power supply for all sensors to reduce the occurrence of ground loop current between supplies.

VOLTAGE CONNECTION

Voltage output sensors and 3-wire current loops will typically use one voltage for powering the sensor and a second voltage (or current) for sending an output signal. Sometimes the power supply ground and signal reference conductor is shared between two circuits resulting in a three-wire device. This economy usually comes at the installer’s expense of having to form a junction at the power supply, sensor, or meter. Sensors having four terminals are also popular and are simply connected to the meter by observing the indicated polarity between sensor and meter.

Analog Input Channels

Photo courtesy of DENT

ESIS is the leading supplier of industrial electronic equipment in the Australian market since 1971. Choose from a range of diverse products to best suit your requirements. Contact us today to discuss your needs. 

Article Courtesy of DENT.

Call Now Button